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Coherence Caching Schemes

Oracle Coherence Workshop
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Agenda

• Coherence’s Approach to Scalability

– Coherence Cache Topologies

• The Coherence Approach

– Why It Works

• Q&A 
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The Coherence Approach

Clustering, Scaling and Caching all Possible
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Coherence: A Unique Approach

• In Coherence…

– Members share responsibilities (health, services, data…)

– Completely Peer-to-Peer

– No Single Points of Bottleneck (SPOBs)

– No Single Points of Failure (SPOFs)

– Linearly scalable to thousands of servers by design

• Servers form a full “mesh”

– No Masters / Slaves etc.

– Data Grid members work together as a team

– Communication is almost always point-to-point

• Designed for commodity switched infrastructures

• Scalable throughput up to the limit of the backplane
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Coherence Scalability

• Coherence: Designed to scale-out the Application-tier

– Standard Java Applications (JSE, non-JEE, container-less)

– Web Applications (session state)

– Middle-tier Applications (JEE, container-based)

• Artifacts that can been scaled

– Application and User State (objects)

– Object Access (crud)

– State Mutation Notifications (events)

– Processing (updates, transactions)
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What About Also Clustered Caching for 
Scale?

• Common uses for Clustered Caching

– HTTP Session Caching for stateful applications

– Page, Document and Segment Caching

– Application Data Caching: Your Own Java Objects (YOJOs;-)

– Load Balancing of Data Operations

• Information Fabrics

• Compute Farms

• Offloading XML Transformations

– Dramatically reduce database load by using read-through, 

write-through and write-behind caching

There is no better way to increase scalability than 

to use caching to unload later tiers!
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Cache Coherency is Also Important

• A cache that is “coherent” shows the same contents 

at every location within a distributed or clustered 

environment

• Caches of read-only data are automatically coherent!

• The choice for clustered caching of read/write data:

– Accept a certain amount of data staleness

– Maintain cache data coherency across the cluster

• Clustered data coherency implies a means to 

synchronize:

– Clustered concurrency control (like Java “synchronized”)

– Distributed Transactional Caching

• Interposing the data caches between the application 

logic and the data source prevents loss of consistency
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Coherence Cache Topologies

Topologies to Ensure Cache Coherency
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Local Caching

Coherence Local Cache Scheme
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The Local Scheme

• Non-Clustered Local Cache

– Contains a local references of POJOs in Application Heap

• Why:

– Replace in-house Cache implementations

– Compatible & aligned with other Coherence Schemes

• How:

– Based on SafeHashMap (high-performance, thread-safe)

– Size Limited (if specified)

• Configurable Expiration Policies:

– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,  

Pluggable
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The Local Scheme
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Replicated Caching

Coherence Replicated Cache Scheme
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The Replicated Cache Scheme

• Bruce-force implementation of Clustered Caching

• Challenge

– Need Extreme Performance (read)

• Solution

– Replicate and maintain copies of all entries in all Members

– Zero latency access as all entries are local to Members

– Replication and syncing process transparent to developer

• Configurable Expiration Policies:

– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,  

Pluggable
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The Replicated Cache Scheme
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The Replicated Cache Scheme

So What Is the 

“Cache”…ahem…Catch?
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The Replicated Cache Scheme (Updates)
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The Replicated Scheme

• Cost Per Update: Updating a replicated cache requires 

pushing the new version of the data to all other cluster 

members, which will limit scalability if there are a high 

frequency of updates per member.

– Each Member must be updated!

– Not scalable for heavy writes!

• Cost Per Entry: The data is replicated to every cluster 

member, so Java heap space is used on each member, 

which will impact performance for large caches. Cost Per 

Entry

– Each Entry consumes Nx memory (N = #Members)

– 1x for each Member

– Not scalable for large caches!

Copyright 2007 18

The Replicated Caching Scheme

So How to Solve the 

Scalability Issue?
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Distributed [Partitioned] Caching

The Disturbed…ahem…Distributed Scheme

Copyright 2007 20

Distributed Cache Scheme

• Sophisticated approach for Clustered Caching

• Challenge:

– Need Extreme Scalability

• Solution:
– Transparently partition the Cache Data; distribute the load 
across all cluster members, including backup cache entries

– Often referred to as ‘Partitioned Topology’

– Linear Scalability : By partitioning the data evenly, the 
per-port throughput (the amount of work being performed 
by each server) remains constant.

• Configurable Expiration Policies:
– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,  
Pluggable

Copyright 2007 21

The Distributed Cache Scheme
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The Distributed Cache Scheme
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Distributed Cache Scheme

• Each Member has logical access to all Entries
– At most 2 network-hop for Access

– At most 4 network-hops for Update

– Regardless of Cluster Size

– This is why Coherence Scales!

• Linear Scalability
– Cache Capacity and Processing Power Increases with 
Cluster Size

– Coherence Load-Balances Partitions across Cluster

– Point-to-Point Communication 

– No multicast required (sometimes not allowed) 

– Ownership: Exactly one node in the cluster is 
responsible for each piece of data in the cache.
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The Distributed Cache Scheme
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The Distributed Cache Scheme

• Distribution is invisible to application

– The application does not need to know the physical location 

of the data

• Recovery occurs in Parallel

– Not 1 to 1 like Active + Passive architectures

• Any Member can fail without data loss

• Configurable # backups

• No Developer or Infrastructure intervention
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The Distributed Cache Scheme

• Benefits:

– Deterministic Access and Update Latency (regardless of Cluster 
Size)

– Seamless, automatic failover and failback

• Backups ‘promoted’ to be Primary

• Primary ‘makes’ new Backup(s)

– Cache Capacity Scales with Cluster Size Linearly

– Dynamically scalable without runtime reconfiguration

– Automatic recovery and failover if any JVM or server failure occurs

• Constraints:

– Cost of backup (but less than Replicated Topology)

– Cost of serialization

– Cost of non-local Entry Access (across the network)

• (use Near Scheme – Discussed Next)

– Existence of Latency
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The Distributed Cache Scheme

• Lookup-free Access to Entries!

– Uses sophisticated ‘hashing’ to partition and load-balance 

Entries onto Cluster Resources

– No registry is required to locate cache entries in Cluster!

– No proxies required to access POJOs in Cluster!

• Master / Slave pattern at the Entry level!

– Not a sequential JVM-based one-to-one recovery pattern

• Cache still operational during recovery!
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The Distributed Caching Scheme

So How to Solve the Latency 

Issue?
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Local & Distributed Caching 
Combination

The Near Cache Scheme
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The Near Cache Scheme

• A composition of pluggable Front and Back schemes
– Provides L1 and L2 caching (cache of a cache)

• Challenge:

– Scalable Performance
– Partitioned Topology may always go across the wire

– Need a local cache (L1) over the distributed scheme (L2)

– Best option for scalable performance!

• Solution:
– Add in-memory performance to distributed cache scalability.

– Configure ‘front’ and ‘back’ topologies

• Configurable Expiration Policies:
– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,  Pluggable

• Coherency: Provides a number of cache-invalidation 
strategies, including simple expiry and event-based 
invalidation.
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The Near Cache Scheme
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The Near Cache Scheme
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The Near Cache Scheme (+ Storage Option)
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Clustered Caching & Scalability 
Performance Summary

• Clustering provides reliability through redundancy, 
and scalability by horizontal scale

• Applications that delegate all state management to 
the database will not scale well

• Clustered caching can significantly reduce the back-
end load, resulting in scalable performance

• Decoupling the application from the back end (using 
caching, clustered data, write-behind and JMS) can 
help make applications Highly Available
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The Coherence Approach –

Why it Works??

The Consensus Algorithm
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Membership Consensus

• Coherence has proprietary clustering technology that 

continuously guarantees consensus across a 

collection of applications

– Essentially… all applications know of all other applications

• With Consensus…

– Data and Services may be reliably partitioned across the 

known members

– Data and Services may be backed-up (on other members)

– Applications may be scaled-out while remaining stateful

– Application state can be maintained consistently 
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The Coherence Approach…

• With consensus…

– Members “know” all other members

– Communication is more efficient (peer-to-peer)

– No outages for voting (no need – everyone is a peer)

– No SPoF, SPoB

– No need for broadcast traffic (yelling at each other)

– You scan do many things when you have “consensus”.
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The Consensus Algorithm

• Oracle Coherence clustering is very different

• All members of the cluster (JVMs) have consensus, or 

agreement, as to:

– Who owns the primary copy of the data

– Who owns the backup copy of the data

– Who has which responsibilities (by default, equal responsibility)

• All members maintain consensus at all times

• Communication is peer-to-peer

– No central registry or hub-and-spoke architecture

– Non-blocking if a member fails (as opposed to “voting” protocols)
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Membership Consensus

• Membership Consensus:

“A common agreement between a set of processes 

as to the membership of the group at a point in time”

• Without Consensus…

– Applications can’t determine their reliably work together (like 

a team!)

– Partitioning of Data or Services can’t reliably be performed or 

maintained

– Data integrity and consistency can not be maintained across 

a collection of processes or servers
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Partitioned Topology : Data Update

With Consensus:

• We can partition/load 

balance Data & Services

• We don’t need to hold 

TCP/IP connections 

open (resource 

intensive)

• Any member can “talk”

directly with any other 

member (peer-to-peer)

• The cluster can 

dynamically (while 

running) scale to any 

size

• Think of the cluster as 

one organism

CONSENSUS
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Consensus is a KEY competitive 

differentiator!

• Without Consensus, competitors resort to …

– Central registries, central servers

– Hub-and-spoke architecture

• This cannot scale because the “hub” gets overwhelmed

– Forcing the user to partition the application manually

• Most applications can’t be easily partitioned

• Two applications end up pointing to two different 

“primaries”

– The same data now has different values

– Data corruption
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Summary

In this lesson, you should have learned how to:

• Describe the different caching schemes that 

Coherence offers

• Understand their uses

• Understand Coherence Consensus
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Q&A
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