ORACLE

Coherence Caching Schemes
Oracle Coherence Workshop

Frkasars

- Agenda

« Coherence’s Approach to Scalability
— Coherence Cache Topologies

* The Coherence Approach
— Why It Works

* Q&A

| Copyright 2007 2 |

The Coherence Approach

Clustering, Scaling and Caching all Possible

| Copyright 2007 3 |

. Coherence: A Unique Approach

* In Coherence...
— Members share responsibilities (health, services, data...)
— Completely Peer-to-Peer
— No Single Points of Bottleneck (SPOBs)
— No Single Points of Failure (SPOFs)
— Linearly scalable to thousands of servers by design
« Servers form a full “mesh”
— No Masters / Slaves etc.
— Data Grid members work together as a team
— Communication is almost always point-to-point Ty
« Designed for commodity switched infrastructures
+ Scalable throughput up to the limit of the backplane

=

| Copyright 2007 4 |

- Coherence Scalability

+ Coherence: Designed to scale-out the Application-tier
— Standard Java Applications (JSE, non-JEE, container-less)
— Web Applications (session state)
— Middle-tier Applications (JEE, container-based)

« Artifacts that can been scaled
— Application and User State (objects)
— Object Access (crud)
— State Mutation Notifications (events)
— Processing (updates, transactions)

| Copyright 2007 5 |

. What About Also Clustered Caching for
Scale?

« Common uses for Clustered Caching
— HTTP Session Caching for stateful applications
— Page, Document and Segment Caching
— Application Data Caching: Your Own Java Objects (YOJOs:-)
— Load Balancing of Data Operations
* Information Fabrics
« Compute Farms
« Offloading XML Transformations

— Dramatically reduce database load by using read-through,
write-through and write-behind caching

There is no better way to increase scalability than
to use caching to unload later tiers!

| Copyright 2007 6 |

. Cache Coherency is Also Important

* A cache that is “coherent” shows the same contents
at every location within a distributed or clustered
environment

+ Caches of read-only data are automatically coherent!

* The choice for clustered caching of read/write data:

— Accept a certain amount of data staleness
— Maintain cache data coherency across the cluster
* Clustered data coherency implies a means to
synchronize:
— Clustered concurrency control (like Java “synchronized”)
— Distributed Transactional Caching
* Interposing the data caches between the application

logic and the data source prevents loss of consistenc
Copyright 2007 7

Coherence Cache Topologies

Topologies to Ensure Cache Coherency

| Copyright 2007 8 |

Local Caching

Coherence Local Cache Scheme

| Copyright 2007 9 |

. The Local Scheme

» Non-Clustered Local Cache
— Contains a local references of POJOs in Application Heap
* Why:
— Replace in-house Cache implementations
— Compatible & aligned with other Coherence Schemes
* How:
— Based on SafeHashMap (high-performance, thread-safe)
— Size Limited (if specified)
« Configurable Expiration Policies:

— LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,
Pluggable

Copyright 2007 10

- The Local Scheme
i g Pomansa i s Pomn v
] —
L v L]
sg | og |
L=t) (=T)
Copyright 2007 1"

Replicated Caching

Coherence Replicated Cache Scheme

Copyright 2007 12

. The Replicated Cache Scheme

* Bruce-force implementation of Clustered Caching
+ Challenge
— Need Extreme Performance (read)
* Solution
— Replicate and maintain copies of all entries in all Members
— Zero latency access as all entries are local to Members
— Replication and syncing process transparent to developer
« Configurable Expiration Policies:

— LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,
Pluggable

Copyright 2007

- The Replicated Cache Scheme

2 D B 2 -
T e —
L |

Copyright 2007

. The Replicated Cache Scheme

So What Is the
“Cache”...ahem...Catch?

Copyright 2007

. The Replicated Cache Scheme (Updates)

Copyright 2007

- The Replicated Scheme

« Cost Per Update: Updating a replicated cache requires
pushing the new version of the data to all other cluster
members, which will limit scalability if there are a high
frequency of updates per member.

— Each Member must be updated!
— Not scalable for heavy writes!

Cost Per Entry: The data is replicated to every cluster
member, so Java heap space is used on each member,
which will impact performance for large caches. Cost Per
Entry

— Each Entry consumes Nx memory (N = #Members)

— 1x for each Member

_ |

Copyright 2007

. The Replicated Caching Scheme

So How to Solve the
Scalability Issue?

Copyright 2007

Distributed [Partitioned] Caching

The Disturbed...ahem...Distributed Scheme

Copyright 2007 19

- Distributed Cache Scheme

+ Sophisticated approach for Clustered Caching
+ Challenge:
- Need Extreme Scalability

+ Solution:
— Transparently partition the Cache Data; distribute the load
across all cluster members, including backup cache entries
— Often referred to as ‘Partitioned Topology’
— Linear Scalability : By partitioning the data evenly, the
per-port throughput (the amount of work being performed
by each server) remains constant.

« Configurable Expiration Policies:
— LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,
Pluggable

Copyright 2007 20

. The Distributed Cache Scheme

enoe

{

Copyright 2007 21

. The Distributed Cache Scheme

-

Copyright 2007

- Distributed Cache Scheme

« Each Member has logical access to all Entries
— At most 2 network-hop for Access
— At most 4 network-hops for Update
— Regardless of Cluster Size
— This is why Coherence Scales!

* Linear Scalability

— Cache Capacity and Processing Power Increases with
Cluster Size

— Coherence Load-Balances Partitions across Cluster
— Point-to-Point Communication
— No multicast required (sometimes not allowed)

— Ownership: Exactly one node in the cluster is
responsible for each piece of data in the cache.

Copyright 2007

. The Distributed Cache Scheme

| esce

Copyright 2007

. The Distributed Cache Scheme

« Distribution is invisible to application

— The application does not need to know the physical location
of the data

» Recovery occurs in Parallel
— Not 1 to 1 like Active + Passive architectures
» Any Member can fail without data loss
+ Configurable # backups
» No Developer or Infrastructure intervention

Copyright 2007

- The Distributed Cache Scheme

* Benefits:
— Deterministic Access and Update Latency (regardless of Cluster
Size)
— Seamless, automatic failover and failback
+ Backups ‘promoted’ to be Primary
+ Primary ‘makes’ new Backup(s)
— Cache Capacity Scales with Cluster Size Linearly
— Dynamically scalable without runtime reconfiguration
— Automatic recovery and failover if any JVM or server failure occurs

« Constraints:
— Cost of backup (but less than Replicated Topology)
— Cost of serialization
— Cost of non-local Entry Access (across the network)
 (use Near Scheme — Discussed Next)
— Existence of Latency

Copyright 2007

. The Distributed Cache Scheme

« Lookup-free Access to Entries!

— Uses sophisticated ‘hashing’ to partition and load-balance
Entries onto Cluster Resources

— No registry is required to locate cache entries in Cluster!
— No proxies required to access POJOs in Cluster!

» Master / Slave pattern at the Entry level!
— Not a sequential JVM-based one-to-one recovery pattern

+ Cache still operational during recovery!

Copyright 2007

. The Distributed Caching Scheme

So How to Solve the Latency
Issue?

Copyright 2007 28

Local & Distributed Caching
Combination

The Near Cache Scheme

Copyright 2007 29

. The Near Cache Scheme

A composition of pluggable Front and Back schemes
— Provides L1 and L2 caching (cache of a cache)
Challenge:
— Scalable Performance
— Partitioned Topology may always go across the wire
— Need a local cache (L1) over the distributed scheme (L2)
— Best option for scalable performance!
Solution:
— Add in-memory performance to distributed cache scalability.
— Configure ‘front’ and ‘back’ topologies

Configurable Expiration Policies:
— LFU, LRU, Hybrid (LFU+LRU), Time-based, Never, Pluggable

Coherency: Provides a number of cache-invalidation
str i including simple expiry and event-based
invalidation.

Copyright 2007 30

. The Near Cache Scheme

o e 1 =

x | A
o i@ - | @ 1
il W]

s &g
= =

Copyright 2007 31
- The Near Cache Scheme
L ﬁl: = | = = £ : £
[P =t e &
TN - Ploie
= el R m= -
| 7 = R Yt
S H T H e
Copyright 2007 32

. The Near Cache Scheme (+ Storage Option)

=i L
B - Rk i

L.

o

——n -

{ 1% "

Copyright 2007

'(_" 1L]

. Clustered Caching & Scalability
Performance Summary

« Clustering provides reliability through redundancy,
and scalability by horizontal scale

* Applications that delegate all state management to
the database will not scale well

« Clustered caching can significantly reduce the back-
end load, resulting in scalable performance

+ Decoupling the application from the back end (using
caching, clustered data, write-behind and JMS) can
help make applications Highly Available

Copyright 2007 34

The Coherence Approach —
Why it Works??

The Consensus Algorithm

Copyright 2007 35

. Membership Consensus T

» Coherence has proprietary clustering technology that
continuously guarantees consensus across a
collection of applications

— Essentially... all applications know of all other applications

» With Consensus...

— Data and Services may be reliably partitioned across the
known members

— Data and Services may be backed-up (on other members)
— Applications may be scaled-out while remaining stateful
— Application state can be maintained consistently

Copyright 2007 36

. The Coherence Approach...

» With consensus...
— Members “know” all other members
— Communication is more efficient (peer-to-peer)
— No outages for voting (no need — everyone is a peer)
— No SPoF, SPoB
— No need for broadcast traffic (yelling at each other)
— You scan do many things when you have “consensus”.

a e el .l"_ .
E - - 7 o -
- . = '
= ' - - - -
& a a
Copyright 2007 37

- The Consensus Algorithm

« Oracle Coherence clustering is very different
» All members of the cluster (JVMs) have consensus, or
agreement, as to:
— Who owns the primary copy of the data
— Who owns the backup copy of the data
— Who has which responsibilities (by default, equal responsibility)
« All members maintain consensus at all times
« Communication is peer-to-peer
— No central registry or hub-and-spoke architecture
— Non-blocking if a member fails (as opposed to “voting” protocols)

Copyright 2007 38

. Membership Consensus T

* Membership Consensus:
“A common agreement between a set of processes
as to the membership of the group at a point in time”

» Without Consensus...
— Applications can’t determine their reliably work together (like
a team!)
— Partitioning of Data or Services can't reliably be performed or
maintained
— Data integrity and consistency can not be maintained across
a collection of processes or servers

Copyright 2007 39

. Partitioned Topology : Data Update

’ CONSENSUS

With Consensus:

+ We can partition/load L] o | =
balance Data & Services | - |

+ We don’t need to hold il [| i3
TCP/IP connections i ﬁ | n = o
open (resource L == L
intensive) TR [T P . - i

+ Any member can “talk” = T = B
directly with any other
member (peer-to-peer)

« The cluster can = | = =
dynamically (while | g
running) scale to any & T
size = o] ‘c_

+ Think of the cluster as | el L
one organism = o

Copyright 2007 40

- Consensus is a KEY competitive
differentiator!

» Without Consensus, competitors resort to ...
— Central registries, central servers
— Hub-and-spoke architecture
« This cannot scale because the “hub” gets overwhelmed
— Forcing the user to partition the application manually
« Most applications can'’t be easily partitioned
» Two applications end up pointing to two different
“primaries”
— The same data now has different values
— Data corruption

Copyright 2007

. Summary

In this lesson, you should have learned how to:

« Describe the different caching schemes that
Coherence offers

+ Understand their uses
+ Understand Coherence Consensus

Copyright 2007

Q&A

ORACLE

