
<Insert Picture Here>

Coherence Caching Schemes

Oracle Coherence Workshop

Copyright 2007 2

Agenda

• Coherence’s Approach to Scalability

– Coherence Cache Topologies

• The Coherence Approach

– Why It Works

• Q&A

Copyright 2007 3

<Insert Picture Here>

The Coherence Approach

Clustering, Scaling and Caching all Possible

Copyright 2007 4

Coherence: A Unique Approach

• In Coherence…

– Members share responsibilities (health, services, data…)

– Completely Peer-to-Peer

– No Single Points of Bottleneck (SPOBs)

– No Single Points of Failure (SPOFs)

– Linearly scalable to thousands of servers by design

• Servers form a full “mesh”

– No Masters / Slaves etc.

– Data Grid members work together as a team

– Communication is almost always point-to-point

• Designed for commodity switched infrastructures

• Scalable throughput up to the limit of the backplane

Copyright 2007 5

Coherence Scalability

• Coherence: Designed to scale-out the Application-tier

– Standard Java Applications (JSE, non-JEE, container-less)

– Web Applications (session state)

– Middle-tier Applications (JEE, container-based)

• Artifacts that can been scaled

– Application and User State (objects)

– Object Access (crud)

– State Mutation Notifications (events)

– Processing (updates, transactions)

Copyright 2007 6

What About Also Clustered Caching for
Scale?

• Common uses for Clustered Caching

– HTTP Session Caching for stateful applications

– Page, Document and Segment Caching

– Application Data Caching: Your Own Java Objects (YOJOs;-)

– Load Balancing of Data Operations

• Information Fabrics

• Compute Farms

• Offloading XML Transformations

– Dramatically reduce database load by using read-through,

write-through and write-behind caching

There is no better way to increase scalability than

to use caching to unload later tiers!

Copyright 2007 7

Cache Coherency is Also Important

• A cache that is “coherent” shows the same contents

at every location within a distributed or clustered

environment

• Caches of read-only data are automatically coherent!

• The choice for clustered caching of read/write data:

– Accept a certain amount of data staleness

– Maintain cache data coherency across the cluster

• Clustered data coherency implies a means to

synchronize:

– Clustered concurrency control (like Java “synchronized”)

– Distributed Transactional Caching

• Interposing the data caches between the application

logic and the data source prevents loss of consistency

Copyright 2007 8

<Insert Picture Here>

Coherence Cache Topologies

Topologies to Ensure Cache Coherency

Copyright 2007 9

<Insert Picture Here>

Local Caching

Coherence Local Cache Scheme

Copyright 2007 10

The Local Scheme

• Non-Clustered Local Cache

– Contains a local references of POJOs in Application Heap

• Why:

– Replace in-house Cache implementations

– Compatible & aligned with other Coherence Schemes

• How:

– Based on SafeHashMap (high-performance, thread-safe)

– Size Limited (if specified)

• Configurable Expiration Policies:

– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,

Pluggable

Copyright 2007 11

The Local Scheme

Copyright 2007 12

<Insert Picture Here>

Replicated Caching

Coherence Replicated Cache Scheme

Copyright 2007 13

The Replicated Cache Scheme

• Bruce-force implementation of Clustered Caching

• Challenge

– Need Extreme Performance (read)

• Solution

– Replicate and maintain copies of all entries in all Members

– Zero latency access as all entries are local to Members

– Replication and syncing process transparent to developer

• Configurable Expiration Policies:

– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,

Pluggable

Copyright 2007 14

The Replicated Cache Scheme

Copyright 2007 15

The Replicated Cache Scheme

So What Is the

“Cache”…ahem…Catch?

Copyright 2007 16

The Replicated Cache Scheme (Updates)

Copyright 2007 17

The Replicated Scheme

• Cost Per Update: Updating a replicated cache requires

pushing the new version of the data to all other cluster

members, which will limit scalability if there are a high

frequency of updates per member.

– Each Member must be updated!

– Not scalable for heavy writes!

• Cost Per Entry: The data is replicated to every cluster

member, so Java heap space is used on each member,

which will impact performance for large caches. Cost Per

Entry

– Each Entry consumes Nx memory (N = #Members)

– 1x for each Member

– Not scalable for large caches!

Copyright 2007 18

The Replicated Caching Scheme

So How to Solve the

Scalability Issue?

Copyright 2007 19

<Insert Picture Here>

Distributed [Partitioned] Caching

The Disturbed…ahem…Distributed Scheme

Copyright 2007 20

Distributed Cache Scheme

• Sophisticated approach for Clustered Caching

• Challenge:

– Need Extreme Scalability

• Solution:
– Transparently partition the Cache Data; distribute the load
across all cluster members, including backup cache entries

– Often referred to as ‘Partitioned Topology’

– Linear Scalability : By partitioning the data evenly, the
per-port throughput (the amount of work being performed
by each server) remains constant.

• Configurable Expiration Policies:
– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,
Pluggable

Copyright 2007 21

The Distributed Cache Scheme

Copyright 2007 22

The Distributed Cache Scheme

Copyright 2007 23

Distributed Cache Scheme

• Each Member has logical access to all Entries
– At most 2 network-hop for Access

– At most 4 network-hops for Update

– Regardless of Cluster Size

– This is why Coherence Scales!

• Linear Scalability
– Cache Capacity and Processing Power Increases with
Cluster Size

– Coherence Load-Balances Partitions across Cluster

– Point-to-Point Communication

– No multicast required (sometimes not allowed)

– Ownership: Exactly one node in the cluster is
responsible for each piece of data in the cache.

Copyright 2007 24

The Distributed Cache Scheme

Copyright 2007 25

The Distributed Cache Scheme

• Distribution is invisible to application

– The application does not need to know the physical location

of the data

• Recovery occurs in Parallel

– Not 1 to 1 like Active + Passive architectures

• Any Member can fail without data loss

• Configurable # backups

• No Developer or Infrastructure intervention

Copyright 2007 26

The Distributed Cache Scheme

• Benefits:

– Deterministic Access and Update Latency (regardless of Cluster
Size)

– Seamless, automatic failover and failback

• Backups ‘promoted’ to be Primary

• Primary ‘makes’ new Backup(s)

– Cache Capacity Scales with Cluster Size Linearly

– Dynamically scalable without runtime reconfiguration

– Automatic recovery and failover if any JVM or server failure occurs

• Constraints:

– Cost of backup (but less than Replicated Topology)

– Cost of serialization

– Cost of non-local Entry Access (across the network)

• (use Near Scheme – Discussed Next)

– Existence of Latency

Copyright 2007 27

The Distributed Cache Scheme

• Lookup-free Access to Entries!

– Uses sophisticated ‘hashing’ to partition and load-balance

Entries onto Cluster Resources

– No registry is required to locate cache entries in Cluster!

– No proxies required to access POJOs in Cluster!

• Master / Slave pattern at the Entry level!

– Not a sequential JVM-based one-to-one recovery pattern

• Cache still operational during recovery!

Copyright 2007 28

The Distributed Caching Scheme

So How to Solve the Latency

Issue?

Copyright 2007 29

<Insert Picture Here>

Local & Distributed Caching
Combination

The Near Cache Scheme

Copyright 2007 30

The Near Cache Scheme

• A composition of pluggable Front and Back schemes
– Provides L1 and L2 caching (cache of a cache)

• Challenge:

– Scalable Performance
– Partitioned Topology may always go across the wire

– Need a local cache (L1) over the distributed scheme (L2)

– Best option for scalable performance!

• Solution:
– Add in-memory performance to distributed cache scalability.

– Configure ‘front’ and ‘back’ topologies

• Configurable Expiration Policies:
– LFU, LRU, Hybrid (LFU+LRU), Time-based, Never, Pluggable

• Coherency: Provides a number of cache-invalidation
strategies, including simple expiry and event-based
invalidation.

Copyright 2007 31

The Near Cache Scheme

Copyright 2007 32

The Near Cache Scheme

Copyright 2007 33

The Near Cache Scheme (+ Storage Option)

Copyright 2007 34

Clustered Caching & Scalability
Performance Summary

• Clustering provides reliability through redundancy,
and scalability by horizontal scale

• Applications that delegate all state management to
the database will not scale well

• Clustered caching can significantly reduce the back-
end load, resulting in scalable performance

• Decoupling the application from the back end (using
caching, clustered data, write-behind and JMS) can
help make applications Highly Available

Copyright 2007 35

<Insert Picture Here>

The Coherence Approach –

Why it Works??

The Consensus Algorithm

Copyright 2007 36

Membership Consensus

• Coherence has proprietary clustering technology that

continuously guarantees consensus across a

collection of applications

– Essentially… all applications know of all other applications

• With Consensus…

– Data and Services may be reliably partitioned across the

known members

– Data and Services may be backed-up (on other members)

– Applications may be scaled-out while remaining stateful

– Application state can be maintained consistently

Copyright 2007 37

The Coherence Approach…

• With consensus…

– Members “know” all other members

– Communication is more efficient (peer-to-peer)

– No outages for voting (no need – everyone is a peer)

– No SPoF, SPoB

– No need for broadcast traffic (yelling at each other)

– You scan do many things when you have “consensus”.

Copyright 2007 38

The Consensus Algorithm

• Oracle Coherence clustering is very different

• All members of the cluster (JVMs) have consensus, or

agreement, as to:

– Who owns the primary copy of the data

– Who owns the backup copy of the data

– Who has which responsibilities (by default, equal responsibility)

• All members maintain consensus at all times

• Communication is peer-to-peer

– No central registry or hub-and-spoke architecture

– Non-blocking if a member fails (as opposed to “voting” protocols)

Copyright 2007 39

Membership Consensus

• Membership Consensus:

“A common agreement between a set of processes

as to the membership of the group at a point in time”

• Without Consensus…

– Applications can’t determine their reliably work together (like

a team!)

– Partitioning of Data or Services can’t reliably be performed or

maintained

– Data integrity and consistency can not be maintained across

a collection of processes or servers

Copyright 2007 40

Partitioned Topology : Data Update

With Consensus:

• We can partition/load

balance Data & Services

• We don’t need to hold

TCP/IP connections

open (resource

intensive)

• Any member can “talk”

directly with any other

member (peer-to-peer)

• The cluster can

dynamically (while

running) scale to any

size

• Think of the cluster as

one organism

CONSENSUS

Copyright 2007 41

Consensus is a KEY competitive

differentiator!

• Without Consensus, competitors resort to …

– Central registries, central servers

– Hub-and-spoke architecture

• This cannot scale because the “hub” gets overwhelmed

– Forcing the user to partition the application manually

• Most applications can’t be easily partitioned

• Two applications end up pointing to two different

“primaries”

– The same data now has different values

– Data corruption

Copyright 2007 42

Summary

In this lesson, you should have learned how to:

• Describe the different caching schemes that

Coherence offers

• Understand their uses

• Understand Coherence Consensus

Copyright 2007 43

Q&A

<Insert Picture Here>

